Using kepler's law:
[tex]\frac{T1^2}{r1^2}=\frac{T2^2}{r2^2}[/tex]Where:
T1 = Planet's period of the first planet
T2 = Planet's period of the second planet
r1 = Average distance to Gliese of the first planet
r2 = Average distance to Gliese of the second planet
First, we need to do a conversion:
[tex]\begin{gathered} T1=63.8days\times\frac{24h}{1day}\times\frac{60min}{1h}\times\frac{60s}{1min}=5512320s \\ T2=130days\frac{24h}{1day}\times\frac{60m\imaginaryI n}{1h}\times\frac{60s}{1m\imaginaryI n}=11232000s \end{gathered}[/tex]Now, solving for r2:
[tex]\begin{gathered} r2=\sqrt{\frac{r1^2\cdot T2^2}{T1^2}} \\ r2=\sqrt{\frac{(3.07\times10^7)^2(11232000)^2}{(5512320)^2}} \\ r2\approx62554858.93km \end{gathered}[/tex]Answer:
62554858.93 km