[tex]\bold{\huge{\underline{ Solution}}}[/tex]
Let assume that the distance between the golf ball and central of green is x
Here,
According to the law of cosine :-
[tex]\bold{\red{ a^{2} = b^{2} + c^{2} - 2ABcos}}{\bold{\red{\theta}}}[/tex]
So, For Hypotenuse law of cosine will be :-
[tex]\sf{ c^{2} = a^{2} + b^{2} - 2ABcos}{\sf{\theta}}[/tex]
Subsitute the required values,
[tex]\sf{ x^{2} = (150)^{2} + (30)^{2} - 2(150)(30)cos}{\sf{100°}}[/tex]
[tex]\sf{ x^{2} = 22500 + 900 - 900cos}{\sf{\times{\dfrac{5π}{9}}}}[/tex]
[tex]\sf{ x^{2} = 22500 + 900 - 900( - 0.174)}[/tex]
[tex]\sf{ x^{2} = 22500 + 900 + 156.6}[/tex]
[tex]\sf{ x^{2} = 23556.6}[/tex]
[tex]\bold{ x = 153.48\: yards }[/tex]
Hence, The distance between the ball and the center of green is 153.48 or 153.5 yards