the number of ways 6 persons can be seated at a round table facing inwards, if two arrangements are said to be indistinguishable when they are in the same clockwise order,is ​

Respuesta :

Answer:

[tex]120[/tex]

Step-by-step explanation:

There are [tex]6[/tex] seats.

Possible number of arrangements =[tex]6![/tex]

Total number of possible rotations=[tex]6[/tex]

Hence possible distinguish arrangements=[tex]=\frac{6!}{6} =\frac{720}{6} =120[/tex]